A recent analysis of MMA Workers Compensation Fund claims with losses greater than $50,000 finds that the leading causes are trips, slips and falls, with 28% of the total. Materials handling (lifting/moving, push/pull and repetitive motion) represents 34% of the total. During a 5-year period (2008-2012) 48 trip, slip, fall claims, each over $50,000, accounted for more than $6.1 million in losses. 34 of the 48 (71%) claims occurred in four departments, led by schools (12) and public works (10). $4.6 million (76%) of the $6.1 million total came from the same four departments (schools, public works, police/sheriff and fire/rescue). Of this, $1.7 million are trips, slips, and falls in schools.

While these numbers are “eye-opening” they are not surprising. In all occupations nationally, trips, slips and falls are a leading cause of worker injuries. According to the U.S. Bureau of Labor Statistics, fatal trips, slips and falls took the lives of 668 workers in 2012. Falls to a lower level accounted for 544 or 81% of these fatalities. Approximately 75% of these fatalities were from falls at heights less than 30 feet and 25% were falls from 10 feet or less.

A review of the individual trip, slip and fall claims does not identify any profound trending towards cause or type of injury. Some result from unsafe conditions but the majority are from human error, unsafe acts and simple carelessness. In the absence of trending towards identifiable activities or job tasks, there are few specific loss control measures to be taken. It is important that we do the “basics” well, raising awareness and maximizing the use of available loss control tools. The RMS Loss Control Department will make reduction of trip, slip and fall injuries a priority in 2014. There is much that you can do, such as eliminating obvious hazards, using safe work practices and understanding that these accidents don’t just happen to someone else.

Trip, Slip and Fall Prevention Resources:

MMA, RMS online training: http://www.memun.org/RMS/LC/default.htm Suggested topics: Fall Prevention, Office Safety, Ladder and Scaffolding Safety and Slip, Trip and Fall Prevention.

MMA, RMS Safety Grants: http://www.memun.org/RMS/LC/grant.htm Safety Enhancement Grants are awarded twice each year in May and October. The grants provide funds on a 2:1 basis up to a maximum of $2,000 for equipment that directly enhances employee safety. Grant requests that prevent exposures to trips, slips and falls such as non-slip footwear, safety harnesses, etc. are considered favorably.

Contact your assigned RMS Loss Control Consultant for facility inspections and work practice observations to identify and remediate trip, slip and fall hazards. Risk Management Services (207) 626-5583.

Risk Management Services Loss Control Department helps municipalities to avoid slip trip and fall hazards during the MMA 2013 Convention.
Winter Hazards Checklist

Winter hazards such as snow and ice accumulations, high winds and widespread power outages can wreak havoc on business-as-usual. Implementing plans for minimizing risks before a winter storm hits can help you manage the event better.

MMA Risk Management Services has prepared a checklist of actions to consider in advance of an impending storm or when developing your winter storm control plan.

Ground Snow Removal
- Verify that snow removal personnel do not push snow up against roof drain outlets. Snow should be cleared from the outlets so that water can easily escape.
- Make sure that your fire protection equipment, hydrants, control valves, and fire pump rooms remain operational and accessible. Snow should be removed from around this equipment at all times.
- Keep all doorways accessible and remove snow to allow egress. This is especially important for emergency exits.

Roof Snow Removal
- Solicit the services of a qualified roofing contractor if you need to remove snow. Ensure that all safety guidelines and applicable standards are strictly followed.
- Inspect roof drains to ensure that they are clear of snow and ice. An area around each drain should be cleared to allow water to reach the drain. Remember that your roof covering can be damaged easily, so plastic shovels should be utilized.

High Winds
- Check the roof for loose flashing. If flashing is found to be loose, ensure that it is secured properly and that the screws used are long enough to adequately engage.
- Check for loose roof top equipment. Equipment may include electrical conduit, piping, communication and satellite dishes. Secure or remove any equipment that is loose or may be blown off by high winds.
- Remove any foreign objects or debris from roofs.
- Remove ground level trash, debris, seasonal equipment or other objects that can become projectiles in high winds.
- Tie down and secure small structures such as storage sheds.
- Monitor the exterior of the building to ensure condition and repair damage as discovered.

Power Outage
- Verify that emergency power equipment is operational.
- Test generators that you rely on and fill their fuel tanks. Remember to only use generators in safe well ventilated areas.
- Monitor building temperatures if your building heat source is lost. If temperatures fall below 40 degrees Fahrenheit, safeguards should be taken to protect water-based systems against freezing.

LOYALTY REWARDED
To Risk Management Services Members

All of us at MMA Risk Management Services (RMS) would like to recognize the extraordinary efforts and continued commitment of our members. We are pleased to announce that the Property & Casualty Pool and Workers Compensation Fund have awarded dividends to their respective members. Through the efforts of our membership, sound management, responsible underwriting and the favorable loss histories of the Property & Casualty Pool and Workers Compensation Fund members, RMS awarded $1,198,714 in 2013.

The Property & Casualty Pool distributed $549,365 in Dividends to its Members in 2013.
The Workers Compensation Fund distributed $649,349 in Dividends to its Members in 2013.

Judy Doore of RMS Member Services delivers dividend check to Frances Hutchinson and Carroll Willette, Town of Linneus.
Handling Flammable and Combustible Liquids

To understand flammable and combustible liquids, it is important to know that it is the vapor, not the liquid, that is most hazardous. For example, explosions occur after mechanics drain a gasoline tank and mistakenly assume it is safe to commence repairs involving welding and/or brazing on the tank. Although the tank is empty of fluid, it contains gasoline vapors. If the vapor concentration is within the explosive range and a source of ignition is introduced, an explosion will likely occur. The storage, handling and use of flammable and combustible liquids is defined in National Fire Protection Agency (NFPA) 30.

The following work practices must be followed when handling flammable and combustible liquids:

- Flammable liquids shall not be stored in areas used for exits, stairways or normally used for the safe passage of people.
- Flammable liquids must be kept in covered containers when not in use.
- Flammable and combustible liquids must be stored only in acceptable containers.
- Grounding and bonding must be utilized when transferring Class I flammable liquids.
- Locations where flammable vapor-air mixtures may exist must have electrical wiring installed according to the requirements of 29 CFR 1910 Subpart S (Electrical):
 - Flammable vapor-air mixtures may exist under normal conditions: Class I Division II
 - Flammable or combustible liquids shall be drawn from or transferred into vessels, containers, or portable tanks within a building by one of the following methods:
 - Through a closed piping system
 - From safety cans
 - By means of a device drawing through the top
 - From containers or portable tanks by gravity through an approved self-closing valve
 - Transfer operations must be provided with adequate ventilation. Sources of ignition are not permitted in areas where flammable vapors may travel.
 - Where flammable or combustible liquids are used or handled, except in closed containers, means shall be provided to dispose of leaked or spilled liquid promptly and safely.
 - Transferring liquids by means of air pressure on the container or portable tanks is prohibited. This type of transfer may result in an overpressure that could exceed what the container or tank is designed to withstand. In addition, a flammable atmosphere could be created within the container or tank. This atmosphere would be particularly sensitive to ignition because of the increased pressure.
- Transfer operations must be provided with adequate ventilation. Sources of ignition are not permitted in areas where flammable vapors may travel.

Flammable Liquids Storage Cabinets

Only approved containers and portable tanks may be used to store flammable and combustible liquids. When a storage cabinet is used, the following requirements must be met:

- Not more than 60 gallons of Class I and/or Class II liquids, or not more than 120 gallons of Class III liquids may be stored in an individual cabinet.
- This standard permits both metal and wooden storage cabinets. Storage cabinets shall be designed and constructed to limit the internal temperature to not more than 325°F when subjected to a standardized 10-minute fire test. All joints and seams shall remain tight and the door shall remain securely closed during the fire test. Storage cabinets shall be conspicuously labeled, “Flammable – Keep Fire Away.”
- The bottom, top, door, and sides of metal cabinets shall be at least No. 18 gage sheet metal and double walled with 1 ½ -inch air space. The door shall be provided with a three-point lock, and the door sill shall be raised at least 2 inches above the bottom of the cabinet.
- Not more than three flammable storage cabinets (60 gallons) total 180 gallons; can be located in a single “fire area”.

Does the cabinet need to be vented? NFPA 30 does not require storage cabinets to be ventilated for fire protection purposes. Most purchased cabinets are provided with vent openings which if not used must be sealed with the bungs supplied by the manufacturer. Ventilation when provided must be installed to standard guidelines.

Reference Standards:
OSHA 29 CFR 1910.106
OSHA 29 CFR 1926.152
NFPA 30, Flammable and Combustible Liquids Code
NFPA I, Fire Code, Sections 60.1 through 60.4

(Endnotes)

1 A fire area is a room with 1-hour, fire rated walls and 1-hour fire rated doors.
Get Ready To Turn On The Heat

The summer season is over, vacations are a faint memory and school is back in session. Soon, we will be cranking up the thermostat again. Now is the time to prepare your boiler for the heating season. Boilers require a certain amount of TLC to ensure safe and reliable operation. Be sure to be aware of, and to satisfy, all requirements of the jurisdiction having authority.

A boiler is a closed vessel that operates at a positive pressure when water is heated by burning a fuel. It appears to be a passive object and looks like nothing more than a large metal box. To the contrary, a boiler is a complex piece of equipment made up of sophisticated mechanical, electrical and electronic devices. Each component of the system was designed or chosen to work in conjunction with all other parts to make this automatic heater safe and efficient. Boilers must be serviced by highly skilled technicians who comply with manufacturer’s guidelines. Malfunction of the boiler or fuel burning equipment can result in catastrophic failure causing an explosion or fire.

At least once a year, every boiler should:

Have waterside cleaned
Heat from the fuel is transferred through the boiler metal to the water inside. Scale and sludge from chemicals and impurities in the water can accumulate on the inside surface of the boiler and act as an insulator resulting in more fuel being burned for the same heat output. The furnace runs hotter than normal, metal temperatures are higher, stress and fatigue affect the structural integrity and more money is spent on fuel.

Have firesides cleaned
Carbon and hydrogen are the major components of fuels burned in boilers. Hydrogen reacts with oxygen and produces water when burned. When the boiler is operating at low loads or intermittently, this water vapor can condense and cause corrosion and rust buildup. Carbon reacts with oxygen and produces carbon dioxide when burned completely. Carbon also causes soot when it is not completely burned. Soot acts as an insulator on the furnace side of the boiler metal and causes the same results as scale, in addition to flashback or a furnace explosion.

Be visually inspected
The watersides and firesides should be visually inspected after being cleaned. The watersides should be examined for signs of corrosion and pitting, remnants of scale and sludge, erosion, cracking, and any other abnormal condition. The fireside should be examined for flame impingement, pockets of soot, damaged refractory, damaged seals and gaskets in the gas passage, and indications of leaking.

Have all controls and safety devices tested
Open the ends of all headers that controls are connected to verify there is no blockage. Remove plugs from all four-way T’s and clean. Open all electrical connection boxes, retighten all connections and clean before reinstalling cover. Dismantle and clean the low water fuel cutoffs. Test and reset all controls during startup before placing into operation.

Have the fuel burning device cleaned and serviced
Remove the burner assembly, inspect, clean and replace any worn parts. Inspect the fuel system, including pipes, tubes, valves, storage tanks and meters. Adjust the burner for optimum combustion throughout and service the range of the burner and test all controls and safety shutoffs during startup before placing into operation.

Have the electrical supply cleaned and tested
Panels should be cleaned, fuses removed and tested, and circuit breakers exercised.

During the heating season, a qualified technician should:

Weekly
-Test the low water fuel cutoff
-Blow down the water column and gauge glass

-Inspect for leaks and clean area around the boiler

Every Three Months
-Test the safety valve by lifting the hand lever
-Open and close the bottom blowdown valve

Annually
-Test and adjust burner operation
-Clean boiler and burner
-Verify operation of all controls and safety devices
-Maintain a current certificate of inspection if required

Welcome New Members

Workers Compensation Fund
Town of Woodville

Unemployment Compensation Fund
Town of Lyman

The Municipal Risk Manager is published seasonally to inform you of developments in municipal risk management which may be of interest to you in your daily business activities. The information in these articles is general in nature and should not be considered advice for any specific risk management or legal question; you should consult with legal counsel or other qualified professional of your own choice.

Publisher: Risk Management Services
Editor: Marcus Ballou
Layout Designer: Jaime G. Clark
P.O. Box 9109, Augusta, ME 04332-9109
1-800-590-5583 or (207) 626-5583

P. O. Box 9109, Augusta, ME 04332-9109
1-800-590-5583 or (207) 626-5583
Layout Designer: Jaime G. Clark
Editor: Marcus Ballou